a2 United States Patent

Shen et al.

US009369388B2

US 9,369,388 B2
Jun. 14, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

FORWARDING INDEX BASED ADAPTIVE

FABRIC LOAD BALANCING

Applicant: Cisco Technology, Inc., San Jose, CA
(US)

Inventors: James Zhijiang Shen, San Ramon, CA
(US); Pingching Vincent Ng, Union
City, CA (US); Huaqing Zeng, Fremont,
CA (US); Ju Lin, San Jose, CA (US)

Assignee: Cisco Technology, Inc., San Jose, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 97 days.

Appl. No.: 14/163,853

Filed: Jan. 24, 2014

Prior Publication Data

US 2015/0215210 A1 Jul. 30, 2015

Int. CL.

HO4L 12/803 (2013.01)

HO4L 12/947 (2013.01)

HO4L 12/931 (2013.01)

U.S. CL

CPC ... HO4L 47/125 (2013.01); HO4L 49/25

(2013.01); HO4L 49/351 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,136,384
8,077,726
8,625,624
8,774,179
2009/0141622
2012/0195195
2013/0201826
2013/0258838
2015/0124586

B1* 11/2006
Bl * 12/2011
Bl 1/2014
B1* 7/2014
Al* 6/2009
Al* 82012
Al 82013
Al 10/2013
Al* 52015

......................... 370/395.1
............ 370/395.31

Wang
Kumar et al.
Rose et al.
Gaggaraetal. 370/389
Bitar ... 370/225
Raietal.cooovvvevennnn, 370/235
Testa et al.

Colven et al.

Pani

370/219

FOREIGN PATENT DOCUMENTS

WO
WO

2010057198 Al
2013067943 Al

5/2010
5/2013

* cited by examiner

Primary Examiner — Hassan Kizou
Assistant Examiner — Hashim Bhatti
(74) Attorney, Agent, or Firm — Patterson + Sheridan, LL.P

(57) ABSTRACT

Embodiments generally provide techniques for load balanc-
ing data transmitted between line cards across a network
fabric. Embodiments receive, at a first line card within a
modular Ethernet switch, data to be transmitted to a second
line card within the modular Ethernet switch. A mask table is
accessed using a value corresponding to the second line card
as an index in order to retrieve a mask value. Embodiments
select one of a plurality of links for the first line card for use
in transmitting the data, based on a load balancing algorithm
and the retrieved mask value. The data is then transmitted to
the second line card using the selected link.

20 Claims, 6 Drawing Sheets

3o

11
FABRIC 1o Lc
310 ¥ 335

9

345
P2 3 4 5 6 7 8
'Y
305 ——| s
350
320f \ \ q\vasf:»

U.S. Patent Jun. 14,2016 Sheet 1 of 6 US 9,369,388 B2

MCDULAR
ETHERNET SWITCH
180

LINE CARDS
110

LOCAL LINK(S)
118

LOAD
BALANCING
COMPONENT
120

MASK TABLE
125

FABRIC
130

FIG. 1

U.S. Patent Jun. 14,2016 Sheet 2 of 6 US 9,369,388 B2

LG
235

O
o

o
240
{'—

1
10
g
w\wgao

o)
P~
[Xe]
28
@ AV
0 gé
L.
<
x o
B~
1
Qi.f}
~t oy

920 S

U.S. Patent Jun. 14,2016 Sheet 3 of 6 US 9,369,388 B2

QLO
S8
o
=
Te3
< N <
D)
® - »,
-
&
o
T2 o W g
Wy
o3
Wy
98
o3 {:‘(}
%
w3 <
Ry
2 o
or o
=
B o
L
<
o3 i
Qg
PN S —~ ¢y
3
i

U.S. Patent Jun. 14,2016 Sheet 4 of 6 US 9,369,388 B2

{BEGIN)

¥

RECEIVE, AT A FIRST LINE CARD, DATATO 410

TRANSMIT TO A REMOTE LINE CARD, WITHIN P
A MODULAR ETHERNET SWITCH

¥

RETRIEVE A MASK VALUE CORRESPONDING TO |~ 415
THE REMOTE LINE CARD FROM A MASK TABLE

¥
SELECT A LINK OF THE FIRST LINE CARD ON
WHICH TO TRANSMIT THE DATA, BASED ON | ~420
THE RETRIEVED MASK VALUE AND A LOAD
BALANGING ALGORITHM

¥
TRANSMIT THE DATA ON THE SELECTED LINK

- 425

5

{ END)

FIG. 4

U.S. Patent Jun. 14,2016 Sheet 5 of 6 US 9,369,388 B2

J
2
[

{BEGIN)

¥
DETECT A TRIGGERING CONDITION HAS BEEN |~ 510
SATISFIED BY A FIRST LINK

¥

QOR EACH ENTRY IN MASK TABLE>J >19

»

¥
RETRIEVE ENTRY FROM MASK TABLE

¥
MODIFY A BIT WITHIN THE ENTRY 525
CORRESPONDING TO THE FIRST LINK

¥ "
SAVE UPDATED ENTRY TO MASK TABLE 530

¥

{_END)

FIG. 5

US 9,369,388 B2

Sheet 6 of 6

Jun. 14, 2016

U.S. Patent

009 k\

0El
DidgEvYd

Sl
ATEY L HSYIA

0ct
ANINCSNOGD
SNIONYIVE
av0T

SOEYD 3N

]
NI LSAS
ONILVHILO

059
AHCNAN

HOESE20H

v HOLIMS

529

SISSVYHD

0Et
DldEYd

St
IV L MSYIN

oct
LININCIWOD
SNIDNYTIVE
v

€9
SOHYD INIT

GO
WILSAS
ONILYHIdO

029
AHOWEN

HOESH00H

019

HOLIME

2]

SISSVHD

9 Bid

US 9,369,388 B2

1
FORWARDING INDEX BASED ADAPTIVE
FABRIC LOAD BALANCING

TECHNICAL FIELD

Embodiments presented in this disclosure generally relate
to communications, and more specifically to load balancing
data between line cards of a modular Ethernet switch.

BACKGROUND

In a communications network, network switches receive
data at one of a set of input interfaces and forward the data on
to one or more of a set of output interfaces. As a general
matter, it is preferable that such switching devices operate as
quickly as possible in order to maintain a high data rate.
Switches are typically data link layer devices that enable
multiple physical network (e.g., local area network (LAN) or
wide area network (WAN)) segments to be interconnected
into a single larger network. Switches forward and flood data
traffic based on, for example, MAC addresses. In the most
general sense, these types of networks transport data in the
form of frames. A frame is a logical grouping of information
sent as a data link layer unit over a transmission medium.
Frames typically include header and/or trailer information
used, for example, for routing, synchronization, and error
control. The header and/or trailer information surrounds user
data contained in the unit. The terms cell, datagram, message,
packet and segment are also used to describe logical informa-
tion groupings at various layers of the OSI reference model
and in various technology circles. As used herein, the term
“frame” should be understood in its broadest sense, and can
encompass other terms such as cell, datagram, message,
packet and segment.

A recent trend is to deploy blade servers within data cen-
ters, in place of more traditional servers. Blade servers gen-
erally have a modular chassis and a set of central processing
unit (“CPU”) blades plugged into that chassis. In addition to
CPU blades, there are typically two or more network interface
blades. For instance, some of these network interface blades
can be used for Fibre Channel (FC) connectivity, e.g., to a
storage area network (SAN), while others could be used for
Ethernet connectivity. The use of such blade servers provides
numerous benefits, including greater rack density, simplified
interconnect, and lower cost. For example, a typical blade
server could include multiple blades, each of which can be
interconnected with a number of different switches, all within
a single chassis. To other devices in the network, each of
blades can appear to be an individual device. Each of blades
may provide, for example, the functionality of a server that is
operating independently of the other blades within chassis.
The Ethernet switches within the server could provide redun-
dant connections with, e.g., a local area network and the
Internet, while the FC switches could provide redundant con-
nections with a SAN and various storage devices.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above-recited features of
the present disclosure can be understood in detail, a more
particular description of the disclosure, briefly summarized
above, may be had by reference to embodiments, some of
which are illustrated in the appended drawings. It is to be
noted, however, that the appended drawings illustrate only
typical embodiments of this disclosure and are therefore not
to be considered limiting of its scope, for the disclosure may
admit to other equally effective embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 illustrates a modular Ethernet switch configured
with a load balancing component, according to one embodi-
ment described herein.

FIG. 2 illustrates line cards within a modular Ethernet
switch interconnected by a fabric, according to one embodi-
ment described herein.

FIG. 3 illustrates a use case of load balancing traffic
between line cards within a modular Ethernet switch inter-
connected by a fabric, according to one embodiment
described herein.

FIG. 4 is a flow diagram illustrating a method of load
balancing traffic between line cards, according to one
embodiment described herein.

FIG. 5 is a flow diagram illustrating a method for updating
a mask table for use in load balancing traffic between line
cards, according to one embodiment described herein.

FIG. 61is ablock diagram illustrating interconnected modu-
lar FEthernet switches, according to one embodiment
described herein.

DESCRIPTION OF EXAMPLE EMBODIMENTS
Overview

Embodiments provide a method for load balancing traffic
between line cards over a fabric. One embodiment receives, at
a first line card within a modular Ethernet switch, data to be
transmitted to a second line card within the modular Ethernet
switch. A mask table is accessed, using a value corresponding
to the second line card as an index, to retrieve a mask value.
Additionally, the embodiment includes selecting one of a
plurality of links for the first line card for use in transmitting
the data, based on a load balancing algorithm and the
retrieved mask value. The data is then transmitted to the
second line card using the selected link.

Another embodiment provides a line card that includes a
plurality of links connected to a network fabric, a memory
containing a mask table, and logic configured to perform an
operation. The mask table includes a plurality of mask values
indexed by identifiers corresponding to remote line cards,
where each of the plurality of mask values comprises a plu-
rality of bits, and where each bit in the plurality of bits
corresponds to a respective one of the plurality of links. The
operation includes receiving data to be transmitted to a sec-
ond line card. Additionally, the operation includes accessing
the mask table, using a value corresponding to the second line
card as an index, to retrieve one of the plurality of mask
values. The operation also includes selecting one of a plural-
ity of links for use in transmitting the data to the second line
card, based on a load balancing algorithm and the retrieved
mask value. The operation further includes transmitting the
data to the second line card using the selected link.

Example Embodiments

Generally, modular server designs are becoming increas-
ingly popular, as shown by the prevalence of blade servers in
modern data centers. Such modular designs can be applied to
network switches as well. An example of such a switch is
shown in FIG. 1, which illustrates a modular Ethernet switch
configured with a load balancing component, according to
one embodiment described herein. As shown, the modular
switch 100 includes a plurality of line cards 110 connected by
way of a fabric 130. Such a switch 100 could be used, for
instance, as part of a switching network to connect various
network devices (not shown) to one another via connections

US 9,369,388 B2

3
between the network devices and the line cards (e.g., using the
local link(s) 115 of the line cards 110).

Generally, such a switching network can employ a variety
of different communication protocols enabling data commu-
nication between the network devices. The line cards 110 may
take the form of an 1/O interface card that typically performs
data frame analysis as part of the switching process. As
shown, each of the line cards includes one or more local
link(s) 115, a load balancing component 120 and a mask table
125. For instance, the local link(s) 115 can represent serial/
deserializer (SERDES) links that connect the respective line
card 115 to the network fabric 130.

The switching fabric 130 connecting the line cards can also
be implemented in a variety of ways. Three common types of
switching fabrics 130 are single-bus architectures, shared-
memory architectures, and crossbars. Single-bus switching
fabric architectures generally use a central fabric element
within the switch to which all the ports of the switch commu-
nicate, where each port arbitrates for access to this fabric
since there is one central switching element.

With shared-memory architectures, a shared memory can
be used to store data frames and a high-speed ASIC can be
configured to read and write to the memory. In such an archi-
tecture, when frames enter the architecture, a switching core
can place them in the memory and can then queue the frames
to their outbound port. Buffering in such an architecture can
be internal to the switching fabric and the buffers may be, e.g.,
fixed or dynamic buffers.

Crossbars use a mesh within the switching fabric to con-
nect all the ports or all the line cards at high speed. Crossbars
can be highly efficient for “balanced traffic,” e.g., if port 1 and
port 2 are communicating, and port 3 and port 4 are commu-
nicating, then the crossbar can direct those transmissions onto
different paths within the fabric. One of the key benefits of
crossbars is the ability to scale to significantly high band-
width and throughputs, thus making crossbars a popular type
of switching fabric. For instance, a crossbar switching fabric
can includes one or more input buffers and one or more output
buffers. In some implementations, there may be input and
output buffers for each port in the switching fabric. Conse-
quently, input and output buffers can be associated with par-
ticular line cards by virtue of the buffers’ association with a
particular port. Data frames to be transferred from one line
card to another can first be queued in the queue corresponding
to the first line card. Such a queue can be implemented as a
first in first out (FIFO) buffer using a variety of memory
structures. Once a data frame is ready for transmission, the
data frame can be serialized and transmitted across a serial
channel where it is received by an input buffer of the switch-
ing fabric. The data frame can then be transmitted across
crossbar to the output buffer corresponding to the appropriate
port of exit from the switching fabric. From the output buffer,
the data frame can then be serialized and transmitted to the
line card corresponding to output buffer port. The data is
typically received at the line card in another queue data struc-
ture.

Generally, the load balancing component 120 is configured
to load balance traffic being transmitted from one line card
110 to another line card, across the local link(s) 115 to the
fabric 130. For instance, the load balancing component 120
could receive, at a first line card 110 within the modular
Ethernet switch 100, data to be transmitted to a second line
card within the modular Ethernet switch 110. The load bal-
ancing component 120 could access the mask table 125 to
retrieve a mask value corresponding to the second line card.

10

15

20

25

30

35

40

45

50

55

60

65

4

For example, the load balancing component 120 could access
the mask table 125 using a value corresponding to the second
line card as an index.

Theload balancing component 120 could then select one of
aplurality of links for the first line card for use in transmitting
the data, based on a load balancing algorithm and the
retrieved mask value. Generally, the load balancing compo-
nent 120 can be configured to implement any load balancing
algorithm, known or unknown, suitable for distributing data
across the local links 115. Examples of such load balancing
algorithms include, without limitation, round-robin load bal-
ancing and random choice load balancing algorithms. Addi-
tionally, the load balancing component 120 can be configured
to take additional factors into consideration when selecting
one of the local links 115 for use in transmitting the data, such
as a local link’s 115 current load, recent response times,
bandwidth capabilities and so on.

Generally, the retrieved mask value corresponding to the
second line card can be composed of a plurality of bits, where
each of the plurality of 115 links for the line card 115 corre-
sponds to a respective one of the plurality of bits. Moreover,
load balancing component 120 can create the mask value such
that the bits within the mask value are set to 1 when the
corresponding link is suitable for use in transmitting data to
the second line card. For example, the load balancing com-
ponent 120 could determine a first value composed of a first
plurality of bits for a first one of the line cards 110, where each
of the plurality of local links 115 for the first line card 110
corresponds to a respective one of the first plurality of bits.
Additionally, for each of the first plurality of bits, the load
balancing component 120 could set the respective bit to 1 if
the corresponding link is available to transmit data to the
second line card, and otherwise the load balancing compo-
nent 120 could set the respective bit to O.

The load balancing component 120 could also determine a
second value composed of a second plurality of bits, where
each of the second plurality of local links 115 for the second
line card corresponds to a respective one of the second plu-
rality of bits. For each of the second plurality of bits, the load
balancing component 120 could set the respective bit to 1 if
the corresponding link of the second line card is available to
receive data from the first line card, and otherwise the load
balancing component 120 could set the respective bit to 0.

The load balancing component 120 could then create the
mask value for use in transmitting data from the first line card
to the second line card, by calculating the intersection of the
determined first value and the determined second value. The
load balancing component 120 could then store the mask
value in the mask table 125, using a value corresponding to
the second line card as an index. Once the load balancing
component 120 has selected one of the local links 115, the
load balancing component 120 can transmit the data to the
second line card using the selected link. Doing so allows the
load balancing component 120 to take full advantage of the
potential bandwidth for transmitting data to the second line
card across the fabric 130.

FIG. 2 illustrates line cards within a modular Ethernet
switch interconnected by a fabric, according to one embodi-
ment described herein. Here, the system 200 includes line
cards 215, 225, 235 that are connected to the switch fabric 210
using links 220, 230, 240, respectively. Although not shown,
each of'the line cards 215, 225, 235 can be configured with a
load balancing component 120 and a mask table 125. The
mask table 125 at each of the line cards 215, 225, 235 can
contain mask values corresponding to each of the other line
cards 215, 225, 235 shown in the system 200. For example,
the mask table 125 at the line card 215 can contain a first mask

US 9,369,388 B2

5

value for the line card 225 and a second mask value for the line
card 235. An example of such a mask table 125 is shown
below in Table 1.

TABLE 1

Exemplary Mask Table

Forwarding Index Mask Value
X 00001111
Y 00000111

For purposes of this example, assume that Table 1 shows
the mask table 125 for line card 215, and further assume that
the forwarding index X in Table 1 corresponds to the line card
225 and the forwarding index Y corresponds to the line card
235. As discussed above, the load balancing component 120
can compute the mask values by determining an intersection
of'a value representing the available links of the line card 215
and the available links of each of the line cards 225, 235.
Thus, in this example, the mask value for forwarding index X
(i.e., for data transmitted from line card 215 to line card 225)
includes four bits set to a value of 1, as each of the line cards
215, 225 has four links 220, 230 connecting to the switch
fabric (i.e., links 1-4 and links 5-8, as shown in FIG. 2).

As such, when the load balancing component 120 receives
data to be transmitted to the line card 225, the load balancing
component 120 could access the mask table 125 using the
forwarding index for the data to be transmitted as an index
(i.e., a forwarding index of X in this example) and could
retrieve the mask value of “00001111.” The load balancing
component 120 could then determine that the data should be
hashed across all four links 220 (i.e., links 1-4) to the fabric
210, and could transmit the data across the fabric 210 accord-
ingly.

Likewise, if the load balancing component 120 then
receives data to be transmitted to the line card 235, the load
balancing component 120 could access the mask table 125
using the forwarding index for the data as an index into the
mask table (i.e., a forwarding index of Y in this example). By
doing so, the load balancing component 120 would retrieve
the mask value of “00000111” from the mask table 125 shown
in Table 1, based on the forwarding index of Y. As discussed
above, the mask value can be determined based on an inter-
section of a value representing the available links of the line
cards 215 and 235. Accordingly, as the line card 235 has three
links 240 connected to the switch fabric 210, the retrieved
mask value of “00000111” has three bits set to a value of 1.
Thus, when transmitting data to the line card 235, the load
balancing component 120 could determine based on the
retrieved mask value of “00000111” that data should be
hashed across only three of the four links 220 (e.g., links 1-3
oflinks 220). Doing so enables the load balancing component
120 to utilize all four links 220 when transmitting data to line
card 225 and to dynamically adapt to using only three of the
four links 220 when transmitting data to the line card 235. In
other words, the load balancing component 120 is capable of
selectively utilizing the fourth link in links 220 for better load
balancing and for increased bandwidth across the switch fab-
ric 210.

Generally, when determining the mask values for use with
data transmission between line cards, the load balancing com-
ponent 120 can consider how many links are available for the
particular line cards. In some embodiments, the load balanc-
ing component 120 is configured to selectively disable certain
links in certain situations. For instance, as a power saving
measure, the load balancing component 120 could dynami-

10

15

20

25

35

45

50

60

65

6

cally put a number of the links for a particular line card into a
low power mode. For example, upon detecting that system
traffic load for the line card is relatively low at a particular
point in time, the load balancing component 120 could select
one or more of the links and could set these links into a low
power mode. Moreover, in doing so, the load balancing com-
ponent 120 could update the mask values in the mask table
125 corresponding to the links in low power mode, such that
load balancing component 120 will not select the links in the
low power mode for data transmission. Upon detecting that
increased bandwidth is needed, the load balancing compo-
nent 120 can restore the low power mode links to full power
mode, and can update the values in the mask table 125 accord-
ingly, such that the load balancing component 120 can once
again select the links as part of the load balancing algorithm.
By dynamically bringing links into and out of a low power
mode as needed, the load balancing component 120 can
reduce power consumption relative to conventional systems
in which all of the links are powered on all of the time,
regardless of the amount of bandwidth required to support the
current real-time traffic flow.

An example of such an embodiment will now be discussed
with respect to FIG. 3, which illustrates a use case of load
balancing traffic between line cards within a modular Ether-
net switch interconnected by a fabric, according to one
embodiment described herein. As shown, the system 300
includes line cards 315, 325, 335 that are connected to the
switching fabric 310 by links 320, 330, 340. For purposes of
this example, assume that the load balancing component 120
has determined that the current system load is sufficiently low
such that not all of the links 320, 340 are needed to support the
traffic flowing to and from the line cards 315, 335. Accord-
ingly, the load balancing component 120 in this example has
set the link 345 into a low power mode, as indicated by the
hashed line in FIG. 3. Additionally, the load balancing com-
ponent 120 can be configured to dynamically disable a par-
ticular link, upon detecting an error condition has occurred
for the particular link. Thus, in this example, the load balanc-
ing component 120 has detected an error condition has been
satisfied with respect to the link 305 and accordingly has set
the link 305 to a disabled state, as indicated by the hashed line.

As a result, the load balancing component 120 on the line
card 325 in this example has determined mask values for
transmitting data to the line cards 315, 335 that indicate the
two links 350 should be used in transmitting data to the line
card 335 and the three links 355 should be used in transmit-
ting data to the line card 315. That is, as discussed above, the
load balancing component 120 can determine the mask value
for the line card 315 by calculating the intersection between a
value representing the available links in links 320 and the
available links in links 330. For example, the load balancing
component 120 could determine the intersection between the
value “00000110” representing the available links in links
340 (i.e., two links are currently available, since link 345 is
currently in a low power mode and thus unavailable) and the
value “00001111” representing the available links in links
330, thus producing a mask value of “00000110” for use in
transmitting data from the line card 325 to the line card 335.

Likewise, the load balancing component 120 can deter-
mine the mask value for use with the line card 335 by calcu-
lating the intersection between a value representing the avail-
able links in links 340 and the available links in links 330. For
example, the load balancing component 120 could determine
that the intersection of the value “00001011” representing the
available links in links 320 (i.e., three links are currently
available, since the link 305 is currently experiencing prob-
lems in this example) and the value “00001111” representing

US 9,369,388 B2

7

the available links in links 330, thus producing a mask value
0t “00001011” for use in transmitting data from the line card
325 to the line card 315. As discussed above, the load balanc-
ing component 120 can dynamically update the mask values
within the mask table 125 as the status of the links 320, 330,
340 changes, thus allowing the line cards 315, 325, 335 to
take full advantage of their available bandwidth, while pre-
serving the ability to disable and enable links on the fly
without causing any packet loss.

FIG. 4 is a flow diagram illustrating a method of load
balancing traffic between line cards, according to one
embodiment described herein. As shown, the method 400
begins at block 410, where the load balancing component 120
receives, at a first line card, data to be transmitted to a remote
line card within a modular Ethernet switch. The load balanc-
ing component 120 then accesses a mask table 125 using a
forwarding index associated with the received data as an
index, to retrieve a mask value corresponding to the remote
line card (block 415). As discussed above, the load balancing
component 120 can calculate the mask value within the mask
table based on an intersection of a value representing avail-
able links at the first line card and a second value representing
available links at the second line card.

The load balancing component 120 then selects one or
more links of'the first line card for use in transmitting the data
to the remote line card across a network fabric, based on the
retrieved mask value and a load balancing algorithm (block
420). While the load balancing component 120 can select a
single link for transmitting the entirety of the data on, the load
balancing component 120 can also be configured to distribute
the data across multiple links for transmission to the second
line card, based on the load balancing algorithm being
employed. The load balancing component 120 then transmits
the data on the selected one or more links (block 425), and the
method 400 ends.

FIG. 5 is a flow diagram illustrating a method for updating
a mask table for use in load balancing traffic between line
cards, according to one embodiment described herein. As
shown, the method 500 begins at block 510, where the load
balancing component 120 detects a triggering condition has
been satisfied by a first link. Generally, the triggering condi-
tion represents any condition associated with a state change of
the first link. For example, the triggering condition could be a
low traffic state for a particular line card and the load balanc-
ing component 120 could determine the first link should be set
to a low power state as a result. As another example, the
triggering condition could be an error condition correspond-
ing to the first link, based on which the load balancing com-
ponent 120 could determine the first link should be disabled
until the error condition can be resolved. As yet another
example, the triggering condition could represent a particular
line card experiencing an increased traffic load and the load
balancing component 120 could determine that the first link
needs to be moved from a low power state to a full power state
in order to increase the available bandwidth of the particular
line card.

The method 500 then enters a loop for each entry in the
mask table 125 (block 515), where the load balancing com-
ponent 120 retrieves an entry from the mask table (block 520)
and modifies a bit within the entry corresponding to the first
link (block 525). For instance, if the triggering condition
represents the first link experiencing an error condition, the
load balancing component 120 could update the entry within
the mask table in order to prevent traffic from being transmit-
ted using the first link. As an example, the load balancing
component 120 could set the bit within the mask value cor-
responding to the first link to a value of 0, such that the load

10

15

20

25

30

35

40

45

50

55

60

65

8

balancing component 120 will not select the first link for use
in transmitting data to the switching fabric. As another
example, if the triggering condition represents an increased
traffic load for a particular line card, the load balancing com-
ponent 120 could update the entry within the mask table to
enable the first link (e.g., from a low power mode to a full
power mode). In this example, the load balancing component
120 could set the bit within the mask value corresponding to
the first link to a value of 1, such that the load balancing
component 120 can select the first link for use in transmitting
data across the switching fabric. The load balancing compo-
nent 120 then saves the updated entry in the mask table (block
530). The load balancing component 120 could then process
the next entry within the mask table, at which point the
method 500 returns to block 520. If no entries within the mask
table remain, the method 500 ends.

FIG. 61is ablock diagram illustrating interconnected modu-
lar FEthernet switches, according to one embodiment
described herein. As shown, the system 600 includes at least
two physically distinct switches: switch 610 and switch 640.
The switches 610, 640 are contained in respective chassis
605, 635. In one embodiment, the chassis 605, 635 are struc-
tures that enclose the various interconnected components of
the routers 610 and 640. Furthermore, the chassis 605, 635
may provide a frame on which to mount the components of
the routers 610, 640. For example, chassis 605 may be
designed to include support elements for mounting the lin-
ecards 630 in the chassis 605 as well as openings for data
ports that enable the linecards 630 to receive and forward data
packets. Further still, the chassis 605 and 135 may be
mounted into a rack or other storage mechanism.

Switches 610, 640 include processors 615, 645 and memo-
ries 620, 650. Processors 615, 645 may be implemented using
one or more processors that may include any number of
processing cores. Moreover, processors 615, 645 may be
implemented using any processor design that is capable of
performing the functions described herein.

Memories 620, 650 may include both volatile and non-
volatile memory elements such as RAM, Flash memory,
internal or external hard drives, EPROMSs and the like. The
memories 620, 650 store the operating systems 625 and 655
that include logic for controlling and monitoring the different
functions performed by switches 610, 640. Operating sys-
tems 625, 655 may be any operating system, including any
operating system that enables each of the switches 610, 640 to
be virtualized into a single virtual switch.

Switches 610, 640 include a plurality of line cards 630,
660. Generally, the line cards 630, 660 are modular electronic
circuits on printed circuit boards that include a plurality of
ports that receive and forward data packets. Switches 610,
640 include a switching fabric 130 (i.e., a back plane) used to
interconnect the line cards 630, 660 and to facilitate internal
routing between the line cards 630, 660. Also, the operating
systems 625, 655 may use the fabric 130 to configure and
monitor the line cards 630, 660. In one embodiment, the
chassis 605, 635 may be designed in a modular fashion such
that line cards 630, 660 can be added to and removed from the
switches 610, 640.

Although FIG. 6 illustrates interconnecting modular
switches, the same techniques discussed herein may also be
applied to other modular network devices that include line
cards interconnected by some form of back plane (e.g., a
switching fabric), e.g., modular routers, bridges, and the like.
Moreover, switches 610, 640 may share the same chassis even
though they are two independent and distinct devices with
separately controlled linecards 630, 660.

US 9,369,388 B2

9

Each of the line cards 630, 660 includes a load balancing
component 120 and a mask table 125. Generally, the mask
tables 125 include a plurality of mask values indexed by
identifiers corresponding to remote line cards (e.g., forward-
ing indexes). For instance, each of the plurality of mask
values can include a plurality of bits, where each bit in the
plurality of bits corresponds to a respective one of the plural-
ity of links. The load balancing component 120 could receive
data to be transmitted to a second line card. The load balanc-
ing component 120 could then access the mask table 125,
using a value corresponding to the second line card as an
index, in order to retrieve one of the plurality of mask values.
Additionally, the load balancing component 120 could select
one ofa plurality of links for use in transmitting the data to the
second line card, based on a load balancing algorithm and the
retrieved mask value. The load balancing component 120
could then transmit the data to the second line card using the
selected link.

Additionally, it is specifically contemplated that embodi-
ments may be provided to end users through a cloud comput-
ing infrastructure. Cloud computing generally refers to the
provision of scalable computing resources as a service over a
network. More formally, cloud computing may be defined as
a computing capability that provides an abstraction between
the computing resource and its underlying technical architec-
ture (e.g., servers, storage, networks), enabling convenient,
on-demand network access to a shared pool of configurable
computing resources that can be rapidly provisioned and
released with minimal management effort or service provider
interaction. Thus, cloud computing allows a user to access
virtual computing resources (e.g., storage, data, applications,
and even complete virtualized computing systems) in “the
cloud,” without regard for the underlying physical systems
(or locations of those systems) used to provide the computing
resources.

Cloud computing resources may be provided to auser on a
pay-per-use basis, where users are charged only for the com-
puting resources actually used (e.g., an amount of storage
space consumed by a user or a number of virtualized systems
instantiated by the user). A user can access any of the
resources that reside in the cloud at any time, and from any-
where across the Internet. For instance, the load balancing
component 120 could be deployed on line cards within a
network device in a cloud computing data center and the load
balancing component 120 could provide load balancing func-
tionality between the line cards within the network device.
Doing so enables the network device to take full advantage of
the available bandwidth between the line cards, while main-
taining the ability to dynamically bring links online and
offline without incurring any packet loss.

While the previous discussion is directed to embodiments
of the present disclosure, other and further embodiments of
the disclosure may be devised without departing from the
basic scope thereof. For example, aspects of the present dis-
closure may be implemented in hardware or software or in a
combination of hardware and software. One embodiment of
the disclosure may be implemented as a program product for
use with a computer system. The program(s) of the program
product define functions of the embodiments (including the
methods described herein) and can be contained on a variety
of computer-readable storage media. Illustrative computer-
readable storage media include, but are not limited to: (i)
non-writable storage media (e.g., read-only memory devices
within a computer such as CD-ROM disks readable by a
CD-ROM drive, flash memory, ROM chips or any type of
solid-state non-volatile semiconductor memory) on which
information is permanently stored; and (ii) writable storage

35

40

45

50

60

65

10

media (e.g., floppy disks within a diskette drive or hard-disk
drive or any type of solid-state random-access semiconductor
memory) on which alterable information is stored. Such com-
puter-readable storage media, when carrying computer-read-
able instructions that direct the functions of the present dis-
closure, are embodiments of the present disclosure.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality and operation of possible
implementations of systems, methods and computer program
products according to various embodiments. In this regard,
each block in the flowchart or block diagrams may represent
amodule, segment or portion of code, which comprises one or
more executable instructions for implementing the specified
logical function(s). It should also be noted that, in some
alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina-
tions of blocks in the block diagrams and/or flowchart illus-
tration, can be implemented by special purpose hardware-
based systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

Inview ofthe foregoing, the scope of the present disclosure
is determined by the claims that follow.

We claim:

1. A method, comprising:

receiving, at a first line card within a modular Ethernet

switch, data to be transmitted to a second line card
within the modular Ethernet switch;
accessing a mask table, using a forwarding index corre-
sponding to the second line card, to retrieve a mask
value, wherein the mask value represents a calculated
intersection of a first value representing available links
of the first line card and a second value representing
available links of the second line card;
selecting one of a plurality of links for the first line card for
use in transmitting the data, based on a load balancing
algorithm and the retrieved mask value; and

transmitting the data to the second line card using the
selected link.

2. The method of claim 1, wherein the mask value com-
prises a plurality of bits, wherein each of the plurality of links
for the first line card corresponds to a respective one of the
plurality of bits.

3. The method of claim 2, wherein selecting one of a
plurality of links for the first line card for use in transmitting
the data comprises:

determining a subset of the plurality of links having corre-

sponding bits in the plurality of bits set to 1; and
selecting the link from the subset of links, based on the load
balancing algorithm.

4. The method of claim 2, wherein the second line card
includes a second plurality of links, and further comprising:

determining a first value comprising a first plurality of bits,

wherein each of the plurality of links for the first line
card corresponds to a respective one of the first plurality
of bits, wherein each of the first plurality of bits is set to
1 ifthe corresponding link is available to transmit data to
the second line card and otherwise is set to O;
determining a second value comprising a second plurality
of bits, wherein each of the second plurality of links for
the second line card corresponds to a respective one of
the second plurality of bits, wherein each of the second

US 9,369,388 B2

11

plurality of bits is set to 1 if the corresponding link is
available to receive data from the first line card and
otherwise is set to 0; and

updating the mask table, using a value corresponding to the

second line card as an index, by setting the mask value to
an intersection of the first value and the second value.

5. The method of claim 1, further comprising:

responsive to detecting a state change event has occurred

for a first one of the plurality of links for the first line
card, updating values within the mask table to reflect the
state change event for the first link.

6. The method of claim 5, wherein the state change event
comprises at least one of an error condition and a low amount
of'traffic on the first link, and wherein updating values within
the mask table comprises updating the values to reflect that
the first link is in a disabled state, such that the first link will
not be selected for use in transmitting the data.

7. The method of claim 5, wherein the state change event
comprises the first link being brought online, and wherein
updating values within the mask table comprises updating the
values to reflect that the first link is in an enabled state, such
that the first link can be selected for use in transmitting the
data.

8. A network device, comprising: a plurality of line cards,
each including a plurality of links; a fabric that interconnects
the plurality of line cards; and

aprocessor configured to: receive, at a first line card of the

plurality of line cards, data to be transmitted to a second
line card of the plurality of line cards; access a mask
table, using a forwarding index corresponding to the
second line card, to retrieve a mask value, wherein the
mask value represents a calculated intersection of a first
value representing available links of the first line card
and a second value representing available links of the
second line card; select one of a plurality of links for the
first line card for use in transmitting the data, based on a
load balancing algorithm and the retrieved mask value;
and transmit the data to the second line card using the
selected link of the first line card.

9. The network device of claim 8, wherein the mask value
comprises a plurality of bits, wherein each of the plurality of
links for the first line card corresponds to a respective one of
the plurality of bits.

10. The network device of claim 9, wherein the load bal-
ancing logic is configured to select one of a plurality of links
for the first line card for use in transmitting the data by:

determining a subset of the plurality of links having corre-

sponding bits in the plurality of bits set to 1; and
selecting the link from the subset of links, based on the load
balancing algorithm.
11. The network device of claim 9, wherein the second line
card includes a second plurality of links, and further compris-
ing:
determining a first value comprising a first plurality of bits,
wherein each of the plurality of links for the first line
card corresponds to a respective one of the first plurality
of'bits, wherein each of the first plurality of bits is set to
1 if the corresponding link is available to transmit data to
the second line card and otherwise is set to O;

determining a second value comprising a second plurality
of bits, wherein each of the second plurality of links for
the second line card corresponds to a respective one of
the second plurality of bits, wherein each of the second
plurality of bits is set to 1 if the corresponding link is
available to receive data from the first line card and
otherwise is set to 0; and

30

35

40

45

50

55

60

12

updating the mask table, using a value corresponding to the
second line card as an index, by setting the mask value to
an intersection of the first value and the second value.

12. The network device of claim 9, further comprising:

responsive to detecting a state change event has occurred

for a first one of the plurality of links for the first line
card, updating values within the mask table to reflect the
state change event for the first link.

13. The network device of claim 12, wherein the state
change event comprises at least one of an error condition and
a low amount of traffic on the first link, and wherein updating
values within the mask table comprises updating the values to
reflect that the first link is in a disabled state, such that the first
link will not be selected for use in transmitting the data.

14. The network device of claim 12, wherein the state
change event comprises the first link being brought online,
and wherein updating values within the mask table comprises
updating the values to reflect that the first link is in an enabled
state, such that the first link can be selected for use in trans-
mitting the data.

15. A line card, comprising: a plurality of links connected
to a network fabric; a memory containing a mask table, the
mask table comprising a plurality of mask values indexed by
identifiers corresponding to remote line cards, wherein each
of the plurality of mask values comprises a plurality of bits,
and wherein each bit in the plurality of bits corresponds to a
respective one of the plurality of links; and a processor con-
figured to perform an operation, comprising: receiving data to
be transmitted to a second line card; accessing a mask table,
using a forwarding index corresponding to the second line
card, to retrieve a mask value, wherein the mask value repre-
sents a calculated intersection of a first value representing
available links of the first line card and a second value repre-
senting available links of the second line card; selecting one
of a plurality of links for use in transmitting the data to the
second line card, based on a load balancing algorithm and the
retrieved mask value; and transmitting the data to the second
line card using the selected link.

16. The line card of claim 15, wherein selecting one of a
plurality of links for the first line card for use in transmitting
the data comprises:

determining a subset of the plurality of links having corre-

sponding bits in the plurality of bits set to 1; and
selecting the link from the subset of links, based on the load
balancing algorithm.
17. The line card of claim 15, wherein the second line card
includes a second plurality of links, and further comprising:
determining a first value comprising a first plurality of bits,
wherein each of the plurality of links corresponds to a
respective one of the first plurality of bits, wherein each
of the first plurality of bits is set to 1 if the corresponding
link is available to transmit data to the second line card
and otherwise is set to 0;

determining a second value comprising a second plurality
of bits, wherein each of the second plurality of links for
the second line card corresponds to a respective one of
the second plurality of bits, wherein each of the second
plurality of bits is set to 1 if the corresponding link is
available to receive data from the first line card and
otherwise is set to 0; and

updating the mask table, using a value corresponding to the

second line card as an index, by setting the mask value to
an intersection of the first value and the second value.

18. The line card of claim 15, the operation further com-
prising:

responsive to detecting a state change event has occurred

for a first one of the plurality of links for the first line

US 9,369,388 B2

13

card, updating values within the mask table to reflect the
state change event for the first link.

19. The line card of claim 18, wherein the state change
event comprises at least one of an error condition and a low
amount of traffic on the first link, and wherein updating values
within the mask table comprises updating the values to reflect
that the first link is in a disabled state, such that the first link
will not be selected for use in transmitting the data.

20. The line card of claim 18, wherein the state change
event comprises the first link being brought online, and
wherein updating values within the mask table comprises
updating the values to reflect that the first link is in an enabled
state, such that the first link can be selected for use in trans-
mitting the data.

10

15

14

